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A sequential derivation is given of the fundamental axisymmetric strain equa~
tions of a spherical shell made from nonlinear elastic material under the assump=
tion of smallness of the relative elongations as compared with unity and under
arbitrary angles of rotation,

The most widely used versions of the boundary value problems for the investi-
gation of nonshallow shells under large deformations were proposed in [1 — 5],
The general formulation of boundary value problems for the investigation of
nonshallow shells under large deformations is found in (6, 7}. Only the geomet~
ric nonlinearity is taken into account in ali these papers, Equations and bound-
ary conditions for the axisymmeuric deformation of a nonshallow spherical shell
under finjte displacements,taking account of a physical nonlinearity, are presen=
ted herein,

1, Let us consider a spherical shell of radius R, thickness /% in spherical rfig co-
ordinates, Let u, w be the components of the displacement vector (Fig,1), which are
functions of just r, © in this case, The follow=
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hold for all the finite strain components different from zero €,,, £e0, €,0,8¢¢ « The
angle of rotation of the normal to the middle surface r = R is given by

W = e 1.5

Let us simplify the relationships (1,1)— (1. 4) by assuming that the relative elonga-
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tions and shears are negligibly small compared to unity, Then we obtain from (1,1)
that dw / 0r ~¢,, ,and therefore, is also negligibly small compared to unity, On this
basis, the second member in (1,1) can be neglected, We conclude analcgously that the
second member in (1, 3) can also be discarded, Furthermore, since it has been established
that dw / dr << 1, the third member in (1.4) can be neglected in comparison with the
first two,

Therefore, under the assumption that the relative elongations and shears are consider-
ably smaller than unity, the simplified finite strain components are

ow 1 .

=51 Eee = ror—p (wsin 6 + u cos 6) (1.6)
1 dw , Ou u
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2. Let us examine a thin shell; then the Kirchhoff's hypotheses are valid, as formu=
lated in the following form :

u = ugy - zu,, w = w,, z2=r—R (2.1)
e = 0, o, =0 (2.2)
The w,, #;, Wy in(2.1) depend only on O, and R is the radius of the shell middle
surface, Substituting (2.1) into (1.7) and taking account of (2, 2), we obtain for [z]| << R
R E2)
Taking account of (2, 3), let us write the formulas for the displacement and strain com-
ponents as

= g (g — ) (2.9)
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8, Let us assume that the shell material is nonlinearly elastic, and its mechanical
properties are characterized by the function II (g;;) which yields the potential energy
density stored per unit volume if the components of the finite strain tensor take the
given values &;;. This function evidently characterizes the mechanical properties of
the shell material completely,

Using the known Castigliano relations, as well as the second relation in (2, 2), we
obtain oIl

O = Gery T 0 (3.1)

Let us express &,, from (8,1) in the terms of the remaining components of the finite
strain tensor and let us substitute this expression in II again, We then obtain a function
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IT* expressed in terms of the remaining five components of the finite strain tensor,
Furthermore, let us assume that expressions for the components of the finite strain tensor,
simplified in conformity with unity and the Kirchhoff's hy potheses,have been substituted

into I , We finally have
I* = [* {3(0} 4 zg(l) g(a) + Zggé) (3.2)

It is important for the sequel that we calculate the quantity W*, the potential energy
stored in the whole shell volume during its deformation, Under the assumptions made
we haye N .
W* = é)l]*ﬁsin Odrdido = 2nR? SH* (1 -+ 7;—) sin 8dzdf  (3.3)

( )
Let us introduce the quantity W defined by the relationship
hi2 hig

¢ 2
W=\ m(1+ ) dx | M (3.4)
~h/e —kre
Evidently W depends on ei, el &, £f). Therefore, we finally obtain for the
internal shell strain energy %

W* = 2 R? 5 W sin 6d0 (3.5)

0

4, Keeping in mind the use of the principle of virtual displacements to derive the
shell equilibrium equations, let us evaluate the variation of W* upon variation of the
displacements U,, W« We have

% 0o
4,1
SW* = ZnRQGS W sin 8d6 = 2nR3 \ (7102 + T8¢ + M ;8e() + @b

’ M y8e0)) sin 640
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1f the relationships (2. 5),(2.6) are taken into account and (4,1) is integrated by parts
by interchanging the derivatives with u,, Wy, we obtain, by taking into account that

M, =M, e® =0for g =0

8o
SW* = 2nR? {S (Tdu, + Nbwe)db + [ Sme sin® (4.3)
6
a ind a2 Gy 9 dwn sin @
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[Ml -+ M R <80 + w“ﬂe:eoé ER)
Here T and N are given by the following relationships

18 0 . . 0w \sin ©
T—_-Tzi?g-e—ﬁé@(rlsxne)—-zl(a—g”—uo)W— (4.4)
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N: 51n6+T151ne %%[Tlsln(}(%-—uo)]”*“ (4'5)
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6. Let us turn to the computation of the elementary work of the external forces
applied to a shell in possible displacements, Let us assume that a system of stresses g,*,
go* is applied to the bounding sphere
of the shell z =h /2, and the sys-
tem ¢, , ¢ to the boundingsphere
2 = — h /2, The mentioned loads
can depend not only on the coordi=
nate g, but also on the displacements
T u, w. Inthe case under considera=

tion the elementary work 84, of
these stresses resultants in possible
Fig, 2 displacements is expressed by

64y = 2nR? §° {[qs"éu(—}« —g—) + ¢, 0w (—1— %)} (1 + Z%} + (5.1)
0

’ h
[qe‘éu (w %) + q,‘ﬁw(m %)J (1 5T >}sm6d9
Let us substitute the relations for u and 6w from (2,4) into (5,1), discarding insig-
nificant terms of order s / R, we have

8

641 = 20 (quduig-+ 9.8 -+ ¢,%0 5 ) sin 0a0 (5.2)
0

&

- h -
=g+, ¢&=0¢" 1+, &*=qg75(@ — @)
We finally obtain the following expression for 84, from (5, 2)

84, = 2nR? § {qgau(, 4+ [qr 6;?5* —g*elg e} 6wo} sinfdd +  (5.3)
0

2rR%q.* sin 8,0w,
We have
64, = § 1Q(r) 6w 1 5 () bu) rdr dg (5.4)
)
where ¥ is the endface surface (Fig,2). Substituting (2.4) into (5.4) and neglecting
terms of order % / R whereever possible, we obtain
hi2
sy =2nR \ [Q()0weS()buo—S(r) & 6“’"] dz — (5.5)
—R/2

2R [ Q*owy + S*8uy — S**d |
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6. Under the assumptions made let us write the Lagrange principle of possible virtual
displacements

P SW* — 64, — 84, =0 (6.1)

In conformity with (4, 5), (5.3) and (5. 5), by considering the variations §u, and Sw,
to be independent, we obtain the following equations and boundary conditions from (6.1)
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The second equation in (6. 2) can be simplified if the expression Ty ctg 8 -+ 47, / 90

is determined from the first and substituted into the second, We then obtain
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The relationship (4, 2) should be added to (6,2), We then obtain a system of equations
and boundary conditions to determine u,, w,, Iy, Ty, M, M,. It is often conven-
ient to integrate this system directly in the form presented here, In some cases it is ex=
pedient to eliminate the static factors by means of (4, 2), Consequently, we obtain a
system of two equations in ug, We- It is expedient to use it if purely geometric condi-
tions are given, On the basis of the boundary value problems obtained, the influence of
the lack of shallowness and of the physical nonlinearity on the critical state of the shell
can be investigated in particular,
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The construction of error estimates of approximate theories of plates is based on inequa~
lities relating the three~dimensional elastic energy of the plate and the elastic energy
according to a two-dimensional approximate theory,

The inequality Eo(ua) < E (w,wy) (1)

has been proved in [1] in the case of extension of an isotropic homogeneous linearly
elastic plate of constant thickness 2 , Here [/ is the three-dimensional elastic enetgy,
w, are the tangential components of the displacement vector, w is the displacement
along the normal to the plate (*), E, is the elastic energy by the theory of the plane

*) For the extension w,is an even and w is an odd function of the transverse coordinate
z, while for bending w,is an odd, and » an even function of =.



