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A sequential derivation is given of the fundamental axisymmetric strain equal 

tions of a spherical shell made from nonlinear elastic material under the assump- 
tion of smallness of.the relative elongations as compared with unity and under 
arbitrary angles of rotation. 

The most wideIy used versions of the boundary value problems for the investi- 

gation of nonshallow shells under large deformations were proposed in [l - S]. 
The general formulation of boundary value problems for the investigation of 

nonshallow shells under large deformations is found in [6, 71. Only the geomet- 
ric nonlinearity is taken into account in all these papers. Equations and bound- 
ary conditions for the axisymmetric deformation of a nonshallow spherical shell 

under finite displacements,taking account of a physical nonlinearity, are presen- 
ted herein. 

1, Let us consider a spherical shell of radius R, thickness h in spherical r$ CO- 

ordinates. Let u, w be the components of the displacement vector (Fig.l), which are 
functions of just r, 0 in this case. The follow- 

ing relationships : 

hold for all the finite strain components different from zero E,.~, eee, ~~s,e~+ . The 
angle of rotation of the normal to the middle surface T = R is given by 

0.5) 

Let us simplify the relationships (1.1) - (1.4) by assuming that the relative elonga- 
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tions and shears are negligibly small compared to unity. Then we obtain from (1.1) 
that aw / dr - E,, , and therefore, is also negligibly small compared to unity. On this 
basis, the second member in (1.1) can be neglected. We conclude analogously that the 

second member in (1.3) can also be discarded. Furthermore, since it has been established 
that dw / dr < 1, the third member in (1.4) can be neglected in comparison with the 
first two. 

Therefore, under the assumption that the relative elongations and shears are consider- 
ably smaller than unity, the simplified finite strain components are 

l9W 
E rr=FP %, = &(wsi*e +UCOS8) (1.6) 

(1.7) 

2, Let us examine a thin shell; then the Kirchhoff’s hypotheses are valid, as formu- 
lated in the following form : 

u = zLg + ZUl, w = wg, z=r-R (2.1) 

&j-e = 0, cr, = 0 (2.2) 

The u,,, ul, w,, in (2.1) depend only on 8, and R is the radius of the shell middle 

surface. Substituting (2.1) into (1. ‘7) and taking account of (2.2). we obtain for jzl< R 

Ul = + gy) (2.3) 

Taking account of (2.3). let us write the formulas for the displacement and strain com- 
ponents as 

2 aw 
U=Uo-~~~ 

w = wo (2.4) 

Here 

3. Let us assume that the shell material is nonlinearly elastic, and its mechanical 
properties are characterized by the function n (Eij) which yields the potential energy 

density stored per unit volume if the components of the finite strain tensor take the 
given values t?ije This function evidently characterizes the mechanical properties of 
the shell material completely. 

Using the known Castigliano relations, as well as the second relation in (2.2), we 
obtain 

6 an 0 rr=&= (3.1) 

Let us express err from (3.1) in the terms of the remaining components of the finite 
strain tensor and let us substitute this expression in n again. We then obtain a function 



888 I.I.Vorovlch and W.I.Minakova 

n* expressed in terms of the remaining five components of the finite strain tensor. 
Furthermore, let us assume that expressions for the components of the finite strain tenso& 

simplified in conformity with unity and the Kirchhoff’s hypotheses,have been substituted 
into II . We finally have 

n* = JJ* [&($ + ZE$J, &8) + z# 
(3.2) 

It is important for the sequel that we calculate the quantity w*, the potential energy 
stored in the whole shell volume during its deformation. Under the assumptions made 

we have 
W* = ’ II*r2sinf3drdOd~ 

x 

= 2nR2 hII* (if +)%.Gn B&&3 (3.3) 

t s 

Let us introduce the quantity W defined by the relationship 

,;1,~*(~+~~z~~=_r:~~~~ (3.4) 

Evidently W depends on a$+!, a:& a!$, &vi. Therefore, we finally obtain for the 

internal shell strain energy 

W* 3 ZaRs{ W sin Ba% (3.5) 

0 

4. Keeping in mind the use of the principle of virtual displacements to derive the 
shell equilibrium equations, let us evaluate the variation of W* upon variation of the 
displacements u,,, ZUO. We have 

so 00 

6W” = 2nR26 5 W sir1 0dt3 = 2nRd \ [‘T,&$j + T&$$ + Mh$&! $ 
(4.1) 

0 i, 

M~G@J sin Bdf3 

If the relationships (2.5>, (2.6) are taken into account and (4.1) is integrated by parts 
by interchanging the derivatives with uO, wO, we obtain, by taking into account that 

Mr = Ma, &!&JO) = 0 for 0 = 0 

6W* = 2nR2 {I (T&i, + N&o,) dO + [TX y + 
0 

Here T and N are given by the following relationships 

(4.3) 

(4.4) 
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6, Let us turn to the computation of the elementary work of the external forces 

applied to a shell in possible displacements. Let us assume that a system of stresses qr+, 

Qe’ is applied to the bounding sphere 
of the shell z = h / 2, and the sys- 

tem a;, qd- to the bounding sphere 
z = - h / 2. The mentioned Ioads 
can depend not only on the coordi- 

nate 0, but also on the displacements 
u, w. In the case under considera- 

tion the elementary work 6A, of 
these stresses resultants in possible 

Fig. 2 displacements is expressed by 

Let us substitute the relations for 6u and 6, from (2.4) into (5. l), discarding insig- 
nificant terms of order h / R, we have 

5 
SAI = 2nR2 

~( 
qeEtuo + qr6wo + qr*6 $ 

1 
sin 0de (5.2) 

0 

qe = 40" + qe-, 47 = qr+ -t- qr-, CL* = &(Qe+ - 49-j 

We finally obtain the following expression for bAl from (5.2) 

We have 

2nR2q,* sin 1306wo 

SAs = 1 [Q (I^) 6~ +- S (r) du] rdr drp (5.4) 
(u) 

where Y is the endface surface (Fig. 2). Substituting (2.4) into (5.4) and neglecting 
terms of order h / R whereever possible, we obtain 

h12 

8Az = 23x.R 
Sr 

Q (4 8~0 8 (4 6~0 - S (4 +ja!?] & -_ (5.5) 

- 12 

Q*dw, + S”tiuo - s*“6 $],,. 0 
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hi2 

Q* = S Q(r)dz, 

h,fz 

s h:z 
S” -_ S (4 dz, s** =: 

--h/2 -h,'2 s S(r) yg 
-h/2 

6, Under the assumption made let us write the Lagrange principle of possible virtual 
displacements 

6W* - 6A, - SA, = 0 03.1) 

In conformity with (4.5), (5.3) and (5. S), by considering the variations &L, and 6w, 

to be independent, we obtain the following equations and boundary conditions from (6.1) 
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The relationship (4.2) should be added to (6.2). We then obtain a system of equations 
and boundary conditions to determine UO, wo, T,, T,, M,, M,. It is often conven- 
ient to integrate this system directly in the form presented here; In some cases it is ex- 
pedient to eIiminate the static factors by means of (4.2). Consequently, we obtain a 

system of two equations in Uo, wo. It is expedient to use it if purely geometric condin 

tions are given. On the basis of the boundary value problems obtained, the influence of 
the lack of shallowness and of the physical nonlinearity on the critical state of the shell 
can be investigated in particular. 
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The construction of error estimates of approximate theories of plates is based on inequa- 
lities relating the three-dimensional elastic energy of the plate and the elastic energy 
according to a two-dimensional approximate theory. 

The inequality 
(1) 

has been proved in [l] in the case of extension of an isotropic homogeneous linearly 
elastic plate of constant thickness h . Here R is the three-dimensional elastic energy, 
W, are the tangential com~nents of the displacement vector, zu is the displacement 

along the normal to the plate ( l ) , E, is the elastic energy by the theory of the plane 

*) For the extension w,is an even and w is an odd function of the transverse coordinate 
x, while for bending w, is an odd, and w an even function of x. 


